Second Wave

               For Spiritually Evolving Humans

Archive for January, 2009


Joanie January 18th, 2009

NHNE Wavemaker News List
Current Members: 430
Be The Wind In NHNE’s Sails. Join Our 58 Monthly Supporters:

Join NHNE on Facebook:

Subscribe / unsubscribe / important links at the bottom of this message.


Associated Press
January 15, 2009

WASHINGTON - They can’t match Harry Potter yet, but scientists are moving
closer to creating a real cloak of invisibility.

Researchers at Duke University, who developed a material that can “cloak” an
item from detection by microwaves, report that they have expanded the number
of wavelengths they can block.

Last August the team reported they had developed so-called metamaterials
that could deflect microwaves around a three-dimensional object, essentially
making it invisible to the waves.

The system works like a mirage, where heat causes the bending of light rays
and cloaks the road ahead behind an image of the sky.

The researchers report in Thursday’s edition of the journal Science that
they have developed a series of mathematical commands to guide the
development of more types of metamaterials to cloak objects from an
increasing range of electromagnetic waves.

“The new device can cloak a much wider spectrum of waves — nearly limitless
– and will scale far more easily to infrared and visible light. The
approach we used should help us expand and improve our abilities to cloak
different types of waves,” senior researcher David R. Smith said in a

The new cloak is made up of more than 10,000 individual pieces of fiberglass
arranged in parallel rows. The mathematical formulas are used to determine
the shape and placement of each piece to deflect the electromagnetic waves.

The research was supported by Raytheon Missile Systems, the Air Force Office
of Scientific Research, InnovateHan Technology, the National Science
Foundation of China, the National Basic Research Program of China and
National Science Foundation of Jiangsu Province, China.


Joanie January 18th, 2009

NHNE Wavemaker News List
Current Members: 430
Be The Wind In NHNE’s Sails. Join Our 58 Monthly Supporters:

Join NHNE on Facebook:

Subscribe / unsubscribe / important links at the bottom of this message.


Thanks to Joseph Dillard.


by Marcus Chown
New Scientist
January 15, 2009

Driving through the countryside south of Hanover, it would be easy to miss
the GEO600 experiment. From the outside, it doesn’t look much: in the corner
of a field stands an assortment of boxy temporary buildings, from which two
long trenches emerge, at a right angle to each other, covered with
corrugated iron. Underneath the metal sheets, however, lies a detector that
stretches for 600 metres.

For the past seven years, this German set-up has been looking for
gravitational waves — ripples in space-time thrown off by super-dense
astronomical objects such as neutron stars and black holes. GEO600 has not
detected any gravitational waves so far, but it might inadvertently have
made the most important discovery in physics for half a century.

For many months, the GEO600 team-members had been scratching their heads
over inexplicable noise that is plaguing their giant detector. Then, out of
the blue, a researcher approached them with an explanation. In fact, he had
even predicted the noise before he knew they were detecting it. According to
Craig Hogan, a physicist at the Fermilab particle physics lab in Batavia,
Illinois, GEO600 has stumbled upon the fundamental limit of space-time –
the point where space-time stops behaving like the smooth continuum Einstein
described and instead dissolves into “grains”, just as a newspaper
photograph dissolves into dots as you zoom in. “It looks like GEO600 is
being buffeted by the microscopic quantum convulsions of space-time,” says

If this doesn’t blow your socks off, then Hogan, who has just been appointed
director of Fermilab’s Center for Particle Astrophysics, has an even bigger
shock in store: “If the GEO600 result is what I suspect it is, then we are
all living in a giant cosmic hologram.”

The idea that we live in a hologram probably sounds absurd, but it is a
natural extension of our best understanding of black holes, and something
with a pretty firm theoretical footing. It has also been surprisingly
helpful for physicists wrestling with theories of how the universe works at
its most fundamental level.

The holograms you find on credit cards and banknotes are etched on
two-dimensional plastic films. When light bounces off them, it recreates the
appearance of a 3D image. In the 1990s physicists Leonard Susskind and Nobel
prizewinner Gerard ‘t Hooft suggested that the same principle might apply to
the universe as a whole. Our everyday experience might itself be a
holographic projection of physical processes that take place on a distant,
2D surface.

The “holographic principle” challenges our sensibilities. It seems hard to
believe that you woke up, brushed your teeth and are reading this article
because of something happening on the boundary of the universe. No one knows
what it would mean for us if we really do live in a hologram, yet theorists
have good reasons to believe that many aspects of the holographic principle
are true.

Susskind and ‘t Hooft’s remarkable idea was motivated by ground-breaking
work on black holes by Jacob Bekenstein of the Hebrew University of
Jerusalem in Israel and Stephen Hawking at the University of Cambridge. In
the mid-1970s, Hawking showed that black holes are in fact not entirely
“black” but instead slowly emit radiation, which causes them to evaporate
and eventually disappear. This poses a puzzle, because Hawking radiation
does not convey any information about the interior of a black hole. When the
black hole has gone, all the information about the star that collapsed to
form the black hole has vanished, which contradicts the widely affirmed
principle that information cannot be destroyed. This is known as the black
hole information paradox.

Bekenstein’s work provided an important clue in resolving the paradox. He
discovered that a black hole’s entropy — which is synonymous with its
information content — is proportional to the surface area of its event
horizon. This is the theoretical surface that cloaks the black hole and
marks the point of no return for infalling matter or light. Theorists have
since shown that microscopic quantum ripples at the event horizon can encode
the information inside the black hole, so there is no mysterious information
loss as the black hole evaporates.

Crucially, this provides a deep physical insight: the 3D information about a
precursor star can be completely encoded in the 2D horizon of the subsequent
black hole — not unlike the 3D image of an object being encoded in a 2D
hologram. Susskind and ‘t Hooft extended the insight to the universe as a
whole on the basis that the cosmos has a horizon too — the boundary from
beyond which light has not had time to reach us in the 13.7-billion-year
lifespan of the universe. What’s more, work by several string theorists,
most notably Juan Maldacena at the Institute for Advanced Study in
Princeton, has confirmed that the idea is on the right track. He showed that
the physics inside a hypothetical universe with five dimensions and shaped
like a Pringle is the same as the physics taking place on the
four-dimensional boundary.

According to Hogan, the holographic principle radically changes our picture
of space-time. Theoretical physicists have long believed that quantum
effects will cause space-time to convulse wildly on the tiniest scales. At
this magnification, the fabric of space-time becomes grainy and is
ultimately made of tiny units rather like pixels, but a hundred billion
billion times smaller than a proton. This distance is known as the Planck
length, a mere 10-35 metres. The Planck length is far beyond the reach of
any conceivable experiment, so nobody dared dream that the graininess of
space-time might be discernable.

That is, not until Hogan realised that the holographic principle changes
everything. If space-time is a grainy hologram, then you can think of the
universe as a sphere whose outer surface is papered in Planck length-sized
squares, each containing one bit of information. The holographic principle
says that the amount of information papering the outside must match the
number of bits contained inside the volume of the universe.

Since the volume of the spherical universe is much bigger than its outer
surface, how could this be true? Hogan realised that in order to have the
same number of bits inside the universe as on the boundary, the world inside
must be made up of grains bigger than the Planck length. “Or, to put it
another way, a holographic universe is blurry,” says Hogan.

This is good news for anyone trying to probe the smallest unit of
space-time. “Contrary to all expectations, it brings its microscopic quantum
structure within reach of current experiments,” says Hogan. So while the
Planck length is too small for experiments to detect, the holographic
“projection” of that graininess could be much, much larger, at around 10-16
metres. “If you lived inside a hologram, you could tell by measuring the
blurring,” he says.

When Hogan first realised this, he wondered if any experiment might be able
to detect the holographic blurriness of space-time. That’s where GEO600
comes in.

Gravitational wave detectors like GEO600 are essentially fantastically
sensitive rulers. The idea is that if a gravitational wave passes through
GEO600, it will alternately stretch space in one direction and squeeze it in
another. To measure this, the GEO600 team fires a single laser through a
half-silvered mirror called a beam splitter. This divides the light into two
beams, which pass down the instrument’s 600-metre perpendicular arms and
bounce back again. The returning light beams merge together at the beam
splitter and create an interference pattern of light and dark regions where
the light waves either cancel out or reinforce each other. Any shift in the
position of those regions tells you that the relative lengths of the arms
has changed.

“The key thing is that such experiments are sensitive to changes in the
length of the rulers that are far smaller than the diameter of a proton,”
says Hogan.

So would they be able to detect a holographic projection of grainy
space-time? Of the five gravitational wave detectors around the world, Hogan
realised that the Anglo-German GEO600 experiment ought to be the most
sensitive to what he had in mind. He predicted that if the experiment’s beam
splitter is buffeted by the quantum convulsions of space-time, this will
show up in its measurements (Physical Review D, vol 77, p 104031). “This
random jitter would cause noise in the laser light signal,” says Hogan.

In June he sent his prediction to the GEO600 team. “Incredibly, I discovered
that the experiment was picking up unexpected noise,” says Hogan. GEO600’s
principal investigator Karsten Danzmann of the Max Planck Institute for
Gravitational Physics in Potsdam, Germany, and also the University of
Hanover, admits that the excess noise, with frequencies of between 300 and
1500 hertz, had been bothering the team for a long time. He replied to Hogan
and sent him a plot of the noise. “It looked exactly the same as my
prediction,” says Hogan. “It was as if the beam splitter had an extra
sideways jitter.”

No one — including Hogan — is yet claiming that GEO600 has found evidence
that we live in a holographic universe. It is far too soon to say. “There
could still be a mundane source of the noise,” Hogan admits.

Gravitational-wave detectors are extremely sensitive, so those who operate
them have to work harder than most to rule out noise. They have to take into
account passing clouds, distant traffic, seismological rumbles and many,
many other sources that could mask a real signal. “The daily business of
improving the sensitivity of these experiments always throws up some excess
noise,” says Danzmann. “We work to identify its cause, get rid of it and
tackle the next source of excess noise.” At present there are no clear
candidate sources for the noise GEO600 is experiencing. “In this respect I
would consider the present situation unpleasant, but not really worrying.”

For a while, the GEO600 team thought the noise Hogan was interested in was
caused by fluctuations in temperature across the beam splitter. However, the
team worked out that this could account for only one-third of the noise at

Danzmann says several planned upgrades should improve the sensitivity of
GEO600 and eliminate some possible experimental sources of excess noise. “If
the noise remains where it is now after these measures, then we have to
think again,” he says.

If GEO600 really has discovered holographic noise from quantum convulsions
of space-time, then it presents a double-edged sword for gravitational wave
researchers. One on hand, the noise will handicap their attempts to detect
gravitational waves. On the other, it could represent an even more
fundamental discovery.

Such a situation would not be unprecedented in physics. Giant detectors
built to look for a hypothetical form of radioactivity in which protons
decay never found such a thing. Instead, they discovered that neutrinos can
change from one type into another — arguably more important because it
could tell us how the universe came to be filled with matter and not
antimatter (New Scientist, 12 April 2008, p 26).

It would be ironic if an instrument built to detect something as vast as
astrophysical sources of gravitational waves inadvertently detected the
minuscule graininess of space-time. “Speaking as a fundamental physicist, I
see discovering holographic noise as far more interesting,” says Hogan.

Despite the fact that if Hogan is right, and holographic noise will spoil
GEO600’s ability to detect gravitational waves, Danzmann is upbeat. “Even if
it limits GEO600’s sensitivity in some frequency range, it would be a price
we would be happy to pay in return for the first detection of the graininess
of space-time.” he says. “You bet we would be pleased. It would be one of
the most remarkable discoveries in a long time.”

However Danzmann is cautious about Hogan’s proposal and believes more
theoretical work needs to be done. “It’s intriguing,” he says. “But it’s not
really a theory yet, more just an idea.” Like many others, Danzmann agrees
it is too early to make any definitive claims. “Let’s wait and see,” he
says. “We think it’s at least a year too early to get excited.”

The longer the puzzle remains, however, the stronger the motivation becomes
to build a dedicated instrument to probe holographic noise. John Cramer of
the University of Washington in Seattle agrees. It was a “lucky accident”
that Hogan’s predictions could be connected to the GEO600 experiment, he
says. “It seems clear that much better experimental investigations could be
mounted if they were focused specifically on the measurement and
characterisation of holographic noise and related phenomena.”

One possibility, according to Hogan, would be to use a device called an atom
interferometer. These operate using the same principle as laser-based
detectors but use beams made of ultracold atoms rather than laser light.
Because atoms can behave as waves with a much smaller wavelength than light,
atom interferometers are significantly smaller and therefore cheaper to
build than their gravitational-wave-detector counterparts.

So what would it mean it if holographic noise has been found? Cramer likens
it to the discovery of unexpected noise by an antenna at Bell Labs in New
Jersey in 1964. That noise turned out to be the cosmic microwave background,
the afterglow of the big bang fireball. “Not only did it earn Arno Penzias
and Robert Wilson a Nobel prize, but it confirmed the big bang and opened up
a whole field of cosmology,” says Cramer.

Hogan is more specific. “Forget Quantum of Solace, we would have directly
observed the quantum of time,” says Hogan. “It’s the smallest possible
interval of time — the Planck length divided by the speed of light.”

More importantly, confirming the holographic principle would be a big help
to researchers trying to unite quantum mechanics and Einstein’s theory of
gravity. Today the most popular approach to quantum gravity is string
theory, which researchers hope could describe happenings in the universe at
the most fundamental level. But it is not the only show in town.
“Holographic space-time is used in certain approaches to quantising gravity
that have a strong connection to string theory,” says Cramer. “Consequently,
some quantum gravity theories might be falsified and others reinforced.”

Hogan agrees that if the holographic principle is confirmed, it rules out
all approaches to quantum gravity that do not incorporate the holographic
principle. Conversely, it would be a boost for those that do — including
some derived from string theory and something called matrix theory.
“Ultimately, we may have our first indication of how space-time emerges out
of quantum theory.” As serendipitous discoveries go, it’s hard to get more
ground-breaking than that.


Joanie January 8th, 2009

Daily Mail
January 8, 2009

Astronauts returning to the moon could be threatened by cosmic rays as a
result of the sun becoming less active, scientists have said.

The sun’s ability to shield the solar system from harmful radiation could
falter in the early 2020s, research from the Swiss Federal Institute of
Aquatic Science and Technology claimed.

At about the same time, the American space agency Nasa plans to send
astronauts back to the moon.

The sun has been relatively active for around 80 years. Scientists have now
calculated that the active spell’s total lifetime is likely to be between 95
and 116 years.

They suspect it will probably finish at the shorter end of this range.

Cosmic rays from deep in space are to some extent prevented from entering
the solar system by the solar wind, a gale of atomic particles blasted out
from the sun.

The sun produces more solar wind when it is highly active.

Fluctuating levels of rare isotopes such as beryllium-10 in Greenland ice
cores provide evidence of the effect of the sun’s active and inactive
phases, according to Jose Abreu from the Swiss Institute in Duebendorf.

Isotopes are atomic mutations — different versions of a particular element.
Certain isotopes are formed when cosmic rays break down the nuclei of oxygen
and nitrogen atoms in the Earth’s atmosphere.

Mr Abreu’s team found that production of these isotopes peaks when the sun
is inactive and more cosmic rays hit the Earth.

Moon landing

A report in New Scientist magazine said in a new inactive phase, ‘those most
likely to be affected would be astronauts’.

It added: ‘Beyond the Earth’s protective magnetic field, their exposure to
the increased cosmic rays let into the solar system due to a weaker solar
wind could cause cancer and fertility loss.’

However, astronauts would benefit from a reduced number of solar flares,
which also produce dangerous radiation, said the magazine.


NHNE Wavemaker News List:

To subscribe, send a message to:

To review current posts:

Visit NHNE’s Mother Ship:

Published by David Sunfellow
NewHeavenNewEarth (NHNE)
Phone: (928) 257-3200
Fax: (815) 642-0117

P.O. Box 2242
Sedona, AZ 86339